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Abstract

Ionizing radiation induces various types of damage in mammalian cells
including DNA single-strand breaks, DNA double-strand breaks (DSB),
DNA-protein cross links, and altered DNA bases. Although human cells can
repair many of these lesions there is little detailed knowledge of the
nature of the genes and the encoded enzymes that control these repair
processes. We report here on the cellular and genetic analyses of DNA
double-strand break repair deficient mammalian cells. It has been well
established that the DNA double-strand break is one of the major lesions
induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we
have shown that the gene(s) responsible for DNA double-strand break
repair is also responsible for the cellular expression of radiation
sensitivity. The molecular genetic analysis of DSB repair in rodent/human
hybrid cells indicate that at least 6 different genes in mammalian cells are
responsible for the repair of radiation-induced DNA double-strand breaks.
Mapping and the prospect of cloning of human radiation repair genes are
reviewed.

There is evidence that DNA repair capacities differ among individuals,
and there are well known instances of inherited susceptibility to cancer.
Our understanding of the genetics of mammalian DNA repair suggest that a
highly complex system is involved, Therefore, the likelihood that there are
a number of alleles in the human population that affect susceptibility to
radiatioi~ effects when present in the heterozygous state must be taken
very seriously, Understanding the molecular and genetic basis of radiation
sensitivity and DNA repair in man will provide a rational foundation to
predict the individual risk associated with radiation exposure and to
prevent radiation-induced genetic damage in the human population,

2



Introduction

A number of laboratories have investigated the mechanisms by which
cell killing, mutation, and neoplastic transformation are induced in rodent
or human cells in vitro following exposure to UV light, X-irradiation and a
variety of chemical carcinogens, When such cells are allowed to repair
DNA prior to cell division, repair of DNA darnage has been linked to the
biological recovery of cells under these conditions (1-3). These findings
support the hypothesis that the response of eukaryotes to DNA damaging
agents is determined by the effectiveness of a variety of DNA repair
systems. Therefore, understanding the nature of the repair and misrepair
processes is central to the elucidation of the mechanisms through which
subsequent adverse health effects such as mutations, fetal malformations,
and cancers are expressed,

Ionizing radiation produces a variety of damage in DNA including DNA-
protein cross-links, DNA single strand breaks (SSB), DNA double strand
breaks (DS13), and base damage. In prokaryotes and lower eukaryotes, a
number of genes involved in the repair of DNA damage caused by ionizing
radiation have been identified, In some cases these genes have been
cloned and their role in different repair pathways partially characterized
(4), These studies have been considerably helped by the use of mutarit
strains. However, DNA repair mechanisms in mammalian cells are less
well understood, primarily due to the lack of suitable mutant cell lines.
However, similar approaches to those used in prokaryotes and lower
eukaryotes are now possible in mammalian cells with the advent of
recombinant DNA techniques and the isolation of a nuimber of mammalian
cell mutants that are defective in DNA repair.

In this report we will review recent studies on the genetics of DNA
repnir in mammalian cells using mutants that are deficient in the repair of
radiation-induced DNA double-strand breaks.

Human genetic syndromes

Mutants of microorganisms sensitive to various ENA damaging agents
have been of immense importance in helping to elucidate the major
pathways of DNA repair in bacteria. In yeast, more than 50 mutants have
been isolated that express sensitivity to UV, X-rays or chemical
carcinogens and are shown to Im deficient in certain repnir genes, In
humnns, individuals afflicted by certain autosotnal recessive syndromes
arc at high risk for cnnccr, G%lls from these patients exhihit both
chromosome instability nnd increased sensitivity to specific DNA damagin~,
agents in cul(urc, C’leaver (5,6) hns provided cvickncc thilt f“ihroblnsts from



xeroderrna pigmentosum (XP) patients are defective in their ability to
repair specific lesions formed in DNA as a result of exposure to UV light.
Increased sensitivity to X-Irradiation of cultured fibroblasts has been
found in a number of autosomal recessive diseases, such as: ataxia
telangiectasia (AT) (7), Fanconi’s anemia (FA) (8), Cockayne’s syndrome
(CS) (9), Gardner syndrome (GS)(9), and Rothmund Thomson syndrome
(RTS) (10). These genetically disordered patients are apparently deficient
in some form of DNA repair. Smith and Paterson (1O) have suggested that
the primary defect of RTS may be an aberrant gene control function which
results in a misdirected repression of a DNA repair gene(s). Several of the
XP and CS genes have been identified recently (1 1-13), However, most of
these genes or gene products that are affected in all of these cancer prone
disorders are unknown.

Genetic analysis of radiation-sensitive mutants

As an approach to the elucidation and the understanding of mammalian
DNA repair, a number of Chinese hamster ovary (CHC)) cell lines that are
sensitive to UV radiation or chemical carcinogens have been isolated (14-
16). A number of ionizing radiation sensitive rodent mutants have also
been isolated (14-19), Thirteen of these mutants have been shown to be
deficient in rejoining of radiation-induced DNA DSB based on results
obtained by neutral elution analysis or pulsed field gel electrophoresis
(20-23). Genetic complementation analysis of different mutant cell lines
with the same phenotype is often used to determine the number of genetic
loci involved in the expression of a particular trait. As indicated in Table
1, a total of13 rodent radiation sensitive mutants have been identified as
deficient in DNA DSB repair, Mutants within the same category belong to
the same complementation group. Most of the repair deficient mutant cell
lines are complemented by normal human fibroblasts or lymphocytes, The
first four groups of mutants belong to different complementation groups.
All the mouse DSB repair-deficient mouse mutants belong to different
completnentaticm groups. Therefore, up to 10 human genes are
responsible for the repair of ionizing radiation-induced DNA DSBS,

Cellular repair capability of DSkl repair mutunt cells

C)nc of the 1>S1) rejoining deficient ~UtiintS, XRS6, has been
characterized cxtcnsivcly, XRS-6 CCIIS are highly sensitive to X-riiys in
terms of CCII killing (1 9), chromosome abcrriitiorls (24,25), cnhnnced
muti]tion induction (26,27), (;2 block (28), nnd the ctlhiit~~~~d
radiosensitivity of [INA synthesis (24), our results nlso indicfitc thilt XRS-
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6 cells have no potential lethal damage repair (30), no sublethal darnage
repair (31 ), and no close-rate effects (4). Biochemical analyses have also
indicated that the ligase (32), topoisornerase (33), and AP endonuclease
activities (unpublished results) of XRS-6 cells are normal and the only
biochemical defect has been the inability to rejoin DNA DSBS (22,23). A
summary of these studies is presented here.
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Table 1. Rodent DNA double-strand break repair-deficient mutants

Repair qf radiation- induced DNA SSB and DSB

The yield of DNA SSB in CHO-K1 and XRS-6 cells upon exposure to
increasing radiation dose was found to be the same (data not shown).
Closure ot’ DNA SSB proceeded at a similar rate in both CHO-K I and XRS-6
cells with im initial SSB closure half-time of 3 min at 370(; (unpublished
results). [ duction of DNA 1>S11was estimate.! in these two cell lines by
pulsed-fielc gel electrophorcsis. Exposure to increasing radiation CIOSCS
cnuscd an increasing fraction of cell DNA to enter the agarose gcl in both
(.~t10-Kl and xrs-{~ cells ((li~ti) not shown), It has been assumed thnt an
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increase in the fraction of DNA radioactivity entering the agarose gel
reflected a decrease in the length of nuclear DNA and thus an increase in
the frequency of DNA DSB. Rejoining of DNA DSB has been estimated by
comparing the amount of DNA in the gel and the plug. After a dose of 50
Gy and a repair time of 4 h the xrs-6 cells showed a qualitatively reduced
ability to rejoin breaks measured by PFGE compare to the parental cells.
In parental, CHO-OK1 cells the radiation-induced dsbs were rapidly
removed. Howe-~er, the DNA breaks were closed in xrs-6 cells somewhat
more slowly, with 50% of the breaks being closed in CH()-K 1 and xrs-5 cells
after 5 and 12 min respectively (33).

L’ffect of delayed plating in synch rm ized G 1 cells

Both of the parental and mutant cells were synchronized in G1 by
isoleucine depletion (34). These cultures were used for the delayed-
plating PLD repair determination and for split-dose recovery in G1 cells.
CHO-K1 and XRS-6 cells were inoculated into T-25 flasks and synchronized
by isoleucine depletion, Estimated by autoradiographic analysis of cultures
with a 60-min pulse of [3H]thymidine (l OmCi/ml at a specific activity of
50 Ci/mmol), it was shown that between 10 and 12% of the cells were ill S
phase. The survival fraction of G1 phase-arrested CHO-K1 cells increased
during postirradiation incubation in IL- medium, As described by
Nagasawa et al., (), CHO-K1 cells displayed the typical ~attern of PLD repair
that saturated about 8 h postirradiation incubation. When PLD repair was
measured at two or three different survival levels the recovery ratio
increased proportionately with dose, However, XRS-6 mutant cells showed
no PLD repair during the postirradiation ho~ding period in lL-medi um.
Lack of PLD repair has also been observed in other DSB repair-deficient
mutants.

Effects of pli~-do.se irradiation in synchronized G] CPII,Y

We measured the split-dose recovery in parental and mutant CCIIS by
delivering two equal dose fractions at vaiious time intervals to cells
synchronized by isoleucine depletion (30). There is a large incrasc in
survival for CHO-K1 cells as a function of the time between doses. The
repair half-time for the parental cell line was about 90 min and an 4 - 5
fold increase in survival was seen when the doses were separated by 4 -12
hours. By contrast, there is no increase in survival for the scnsitivt?
mutant, XRS-6 cells during the interval of close fraction,



Dose rate effects were measured in synchronized G1 cells. CHO K1 cells
exhibited a large close rate effect when survival curve generate from
exposure to g-rays at 75 cGy/min and 15.3 cGy/h were compared (30). On
the other hand, there was no apparent dose-rate effect for the X-ray-
sensitive XRS-6 mutant cells, even when the cells were exposed to g-ray at
the very low dose rate of 2,7 cGy/h (30).

Radiation mutagenesis

It has been suggested that radiation-induced deletion mutation may
result from DNA double-strand breaks since experiments show that both
chromosomal aberrations and mutations can be induced by treating cells
with restriction endonucleases (35). Evans et al. (36) suggested that the
repair deficiency could be responsible for the occurrence of residual DNA
multilocus lesions following X-irradiation in the radiosensitive strain LY-S
of the mouse Iymphoma cell line (L5178Y) which results in its increased
mutational response. In addition to mouse LY-S cells, enhanced radiation-
induced mutation-induction (hypermutability) observed in several other
DSB repair deficient mutants (37,38) suggests that the mutational events
outnumber the lethal events induced by DSBS. A plot of mutation
frequency versus survival have been analyzed in mutants M1O and XRS-6
(37,39). It is reasonably fitted by a, common line suggesting a common
lesion type leading to expressed mutations and cell killing in both these cell
lines. These results suggest the likely involvement of DSB in mutation
induction as well as cell killing in irradiated mammalian cells. It also seems
likely that the high mutability of the DSB repair-deficient mutants result
frum its inability to remove dsb from the DNA resulting in high levels of
deletions (40,4 1).

Cloning of human DSB repair genes

Present attempts to clo~le human DNA-repair genes rely on schemes
which utilize human genomic DNA to complement rodent lines with
defined deficiencies in DNA repair mechanisms. Once a complemeriting
human gene can be identified within a deficient rodent background
(introduced by DNA transection), recombinant DNA technologies can be
utilized to isolate and clone th~ human gene. In this approach, DNA from
normal human cells is transfectcd into mutant hamster cells using the
calcium phosphate precipitation method, Selective pressure is then applied
to the transected population by treatment with an appropriate agent (e.g,,
I.JV, X-rays, chemicals) under conditions th~t allow only transfcctecl cells
thnt !~ave a normal or wild-type phenotype to survive. It is presumed that
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resistant rodent clones have acquired the repair g ne of interest by
integration of the foreign human DNA, The repair-proficient transformants
are often screened with human repetitive sequences to verify the presence
of DNA of human origin within the transformants. The human Alu-family
seque~-,ces constitute a built-in physical genetic marker that allow for the
detection and localization of human DNA sequences in transformed
hamster cells. In the past 10 years, 6 human DNA repair genes have been
isolated. Westerveld et al., (42) Weber et al.,(43), Mudgett et al., (44) and
Weeda et al, (45) have used similar strategies to clone 4 human repair
genes utilizing CHO mutants deficient in DNA excision repair (ERCC1, ERCC2,
ERCC3, ERCC5, ERCC6), A Iwman repair gene responsible for the rejoining of
DNA single strand breaks (XRCC 1 ) has also been cloned by Thompson et al.
(46).

There are several major reasons for such slow progress in isolating
human radiation DNA repair genes: 1) Current methods for cloning are
dependent on functional complementation rather than use of molecular
probes; 2) Mammalian cells in general are inefficient at taking up large
DNA molecules. In the case of DSB repair-deficient mutants, such as XRS-6,
the transection frequency by cosmids is at least 10-50 fold less than
normal CHO cells (unpublished results); 3) DS13 repair-deficient mutants are
sensitive to ionizing radiation, but radiation itself is not an ideal selection
agent for the isolation of repair-proficient transformants.

To avoid all the possible phenotypic drawbacks of the repair-deficient
mutants described above, advanced somatic and molecular genetic
technologies have been suggested for the cloning of human DSB repair
genes. It is well established that functional complementation can be
achieved by somatic cell hybridization at a very high efficiency, The
human chromosome that complements defective rodent repair phenotypes
can be identified from the resulting hybrids between normal human cells
and rodent mutants (477-49). Recent development of a high efficiency
(>1x1O-5) chromosome transfer technique provides an approach for
construction of hybrids containing only a single specific human
chromosome (50-5 1). If the radiation-sensitivity of rodent repair-
deficient mutant cells can be complemented by a single human
chromosome, it means that a repair gene(s) is located on this cpecific
human chromosome. Somatic cell genetic techniques have also been
developed to reduce the amount of human chromosomes present in a
hybrid cell (52) Therefore, it is now possible to construct a human/mutant
hybrid, which contains only a fragment of a specific human chromosome
that ctin functionally complement the mutant cells. Subsequently, unique
human sequences or transcripts located on a fragment of a human
chromosome will be amplified and isolated by PCR technique using human
specific Alu as the primer (53). These isolated human probes from a
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known region of a specific human chromosome will then be used to clone
the repair gene(s) in YACS which can accommodate large sizes of DNA
(100-800 kb),

Mapping of human DSB repair genes

Identification of human chromosomes carrying genes that complement
DNA repair deficiencies in rodent mutant cells has been done by somatic
cell genetic techniques. Human cells were fused to rodent mutant cells and
hybrids were selected at levels of DNA-damaging agent at which the
mutant cells were hypersensitive. Concordance of hybrid clone resistance
to the selecting agent with a particular human chromosome (or part of a
human chromosome) identifies the location of the complementing gene --
Excision Repair Cross Complementing (ERCC) or X-ray Repair Cross
Complementing (XRCC). Such studies have mapped ERCC1, ERCC2 and
XRCC1 onto human chromosome 19q13. l-q] 3.3 (54-56), ERCC3 and ERCC5
onto chromosome 2 and 13, respectively (49), and XRCC4 onto chromosome
5 (50). Furthermore, similar preliminary data suggest the location of
ERCC4 on chromosome 16p13. 13-p13.3 (58), and that of XRCC2 and XRCC3
on chromosomes 7 and 14, respectively (59).

Radiation resistance or sensitivity of somatic cell hybrids constructed
from the fusion of XRS-6 cells with primary human fibroblasts strongly
correlated with the retention of human chromosome 2 isozyme and
molecular markers. Disconcordancies between some chromosome 2
markers and the radiation resistance phenotype in some of the hybrid cells
suggested the location of X-ray Repair Cross Complementing 5 (XRCC5)
gene on the chromosome 2 (60). Introduction of human chromosome 2 by
microcell-mediated chromosome transfer into the radiation sensitive XRS-6
cells resu!ted in hybrid cells in which the radiation sensitivity was
complemented (39, 60).

DNA repair and radiation protection

There is evidence that DNA repair capacities differ among individuals,
and there are well known instances of inherited susceptibility to cancer.
Our understanding of the genetics of mammalian DNA repair suggest the
involvement of a highly complex system. It also clear that certain DNA-
repair-related genetic disorders are associated with autosomal recessive
diseases, such as XP and AT. Even though human genetic disorders related
to DNA DSB repair have not been identified yet, it might be expected the
heterozygotic state of some of these DSB repair genes or these disease-
associated alleles would have some phenotypic effect. This could have
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quite an important effect on the population. Nagasawa et al., have
measured radiation sensitivity among ten apparent normal human diploid
fibroblast strains based on three different end points (26). They have
found that three of these ten strains showed a moderate moderate degree
of hypersensitivity to X-rays by all three assays, falling within the range
previously reported for AT heterozygotes (27). Therefore, the likelihood
that there are a number of alleles in the human population that affect
susceptibility to radiation effects when present in the heterozygous state
must be taken very seriously. Understanding the molecular and ge,ietic
basis of radiation sensitivity and DNA repair in man will provide a rational
foundation to predict the individual risk associated with radiation
exposure and to prevent radiation-indilced genetic damage in the human
population.
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